Saturday, January 24, 2009

Genetics of lipid profiles in European and African Americans

Genetic Differences between the Determinants of Lipid Profile Phenotypes in African and European Americans: The Jackson Heart Study
Rahul C. Deo, David Reich, Arti Tandon, Ermeg Akylbekova, Nick Patterson, Alicja Waliszewska, Sekar Kathiresan, Daniel Sarpong, Herman A. Taylor, Jr., James G. Wilson
PLoS Genetics 5(1): e1000342.
Abstract: Genome-wide association analysis in populations of European descent has recently found more than a hundred genetic variants affecting risk for common disease. An open question, however, is how relevant the variants discovered in Europeans are to other populations. To address this problem for cardiovascular phenotypes, we studied a cohort of 4,464 African Americans from the Jackson Heart Study (JHS), in whom we genotyped both a panel of 12 recently discovered genetic variants known to predict lipid profile levels in Europeans and a panel of up to 1,447 ancestry informative markers allowing us to determine the African ancestry proportion of each individual at each position in the genome. Focusing on lipid profiles—HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), and triglycerides (TG)—we identified the lipoprotein lipase (LPL) locus as harboring variants that account for interethnic variation in HDL-C and TG. In particular, we identified a novel common variant within LPL that is strongly associated with TG (p = 2.7×10−6) and explains nearly 1% of the variability in this phenotype, the most of any variant in African Americans to date. Strikingly, the extensively studied “gain-of-function” S447X mutation at LPL, which has been hypothesized to be the major determinant of the LPL-TG genetic association and is in trials for human gene therapy, has a significantly diminished strength of biological effect when it is found on a background of African rather than European ancestry. These results suggest that there are other, yet undiscovered variants at the locus that are truly causal (and are in linkage disequilibrium with S447X) or that work synergistically with S447X to modulate TG levels. Finally, we find systematically lower effect sizes for the 12 risk variants discovered in European populations on the African local ancestry background in JHS, highlighting the need for caution in the use of genetic variants for risk assessment across different populations.

Friday, January 09, 2009

Gene importance and evolutionary rate

Why Is the Correlation between Gene Importance and Gene Evolutionary Rate So Weak?
Zhi Wang, Jianzhi Zhang
PLoS Genetics 5(1): e1000329.
Abstract: One of the few commonly believed principles of molecular evolution is that functionally more important genes (or DNA sequences) evolve more slowly than less important ones. This principle is widely used by molecular biologists in daily practice. However, recent genomic analysis of a diverse array of organisms found only weak, negative correlations between the evolutionary rate of a gene and its functional importance, typically measured under a single benign lab condition. A frequently suggested cause of the above finding is that gene importance determined in the lab differs from that in an organism's natural environment. Here, we test this hypothesis in yeast using gene importance values experimentally determined in 418 lab conditions or computationally predicted for 10,000 nutritional conditions. In no single condition or combination of conditions did we find a much stronger negative correlation, which is explainable by our subsequent finding that always-essential (enzyme) genes do not evolve significantly more slowly than sometimes-essential or always-nonessential ones. Furthermore, we verified that functional density, approximated by the fraction of amino acid sites within protein domains, is uncorrelated with gene importance. Thus, neither the lab-nature mismatch nor a potentially biased among-gene distribution of functional density explains the observed weakness of the correlation between gene importance and evolutionary rate. We conclude that the weakness is factual, rather than artifactual. In addition to being weakened by population genetic reasons, the correlation is likely to have been further weakened by the presence of multiple nontrivial rate determinants that are independent from gene importance. These findings notwithstanding, we show that the principle of slower evolution of more important genes does have some predictive power when genes with vastly different evolutionary rates are compared, explaining why the principle can be practically useful despite the weakness of the correlation.

Friday, January 02, 2009

Genetic information doesn't add much for predicting diabetes

Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study.
van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA, Hofman A, Sijbrands EJ, Janssens AC.
Diabetes. 2008 Nov;57(11):3122-8.
OBJECTIVE: Prediction of type 2 diabetes based on genetic testing might improve identification of high-risk subjects. Genome-wide association (GWA) studies identified multiple new genetic variants that associate with type 2 diabetes. The predictive value of genetic testing for prediction of type 2 diabetes in the general population is unclear. RESEARCH DESIGN AND METHODS: We investigated 18 polymorphisms from recent GWA studies on type 2 diabetes in the Rotterdam Study, a prospective, population-based study among homogeneous Caucasian individuals of 55 years and older (genotyped subjects, n = 6,544; prevalent cases, n = 686; incident cases during follow-up, n = 601; mean follow-up 10.6 years). The predictive value of these polymorphisms was examined alone and in addition to clinical characteristics using logistic and Cox regression analyses. The discriminative accuracy of the prediction models was assessed by the area under the receiver operating characteristic curves (AUCs). RESULTS: Of the 18 polymorphisms, the ADAMTS9, CDKAL1, CDKN2A/B-rs1412829, FTO, IGF2BP2, JAZF1, SLC30A8, TCF7L2, and WFS1 variants were associated with type 2 diabetes risk in our population. The AUC was 0.60 (95% CI 0.57-0.63) for prediction based on the genetic polymorphisms; 0.66 (0.63-0.68) for age, sex, and BMI; and 0.68 (0.66-0.71) for the genetic polymorphisms and clinical characteristics combined. CONCLUSIONS: We showed that 9 of 18 well-established genetic risk variants were associated with type 2 diabetes in a population-based study. Combining genetic variants has low predictive value for future type 2 diabetes at a population-based level. The genetic polymorphisms only marginally improved the prediction of type 2 diabetes beyond clinical characteristics.
 
Locations of visitors to this page