Friday, May 05, 2006

Green Beard (armpit effect, SRPM) growing

Post from Science Blog on greed beard "altruism" in lizards.

Self Recognition, color signals, and cycles of greenbeard mutualism and altruism
Barry Sinervo, Alexis Chaine, Jean Clobert, Ryan Calsbeek, Lisa Hazard, Lesley Lancaster, Andrew G. McAdam, Suzanne Alonzo, Gwynne Corrigan, and Michael E. Hochberg

PNAS: Published online May 1, 2006

Abstract: Altruism presents a challenge to evolutionary theory because selection should favor selfish over caring strategies. Greenbeard altruism resolves this paradox by allowing cooperators to identify individuals carrying similar alleles producing a form of genic selection. In side-blotched lizards, genetically similar but unrelated blue male morphs settle on adjacent territories and cooperate. Here we show that payoffs of cooperation depend on asymmetric costs of orange neighbors. One blue male experiences low fitness and buffers his unrelated partner from aggressive orange males despite the potential benefits of defection. We show that recognition behavior is highly heritable in nature, and we map genetic factors underlying color and self-recognition behavior of genetic similarity in both sexes. Recognition and cooperation arise from genome-wide factors based on our mapping study of the location of genes responsible for self-recognition behavior, recognition of blue color, and the color locus. Our results provide an example of greenbeard interactions in a vertebrate that are typified by cycles of greenbeard mutualism interspersed with phases of transient true altruism. Such cycles provide a mechanism encouraging the origin and stability of true altruism.

... and another recent paper in Nature that invokes green beard type marker recognition:

Mikhail Burtsev and Peter Turchin: 'Evolution of cooperative strategies from first principles', Nature, vol. 440, 20 April 2006, 1041-1044.

Abctract:One of the greatest challenges in the modern biological and social sciences is to understand the evolution of cooperative behaviour. General outlines of the answer to this puzzle are currently emerging as a result of developments in the theories of kin selection, reciprocity, multilevel selection and cultural group selection. The main conceptual tool used in probing the logical coherence of proposed explanations has been game theory, including both analytical models and agent-based simulations. The game-theoretic approach yields clear-cut results but assumes, as a rule, a simple structure of payoffs and a small set of possible strategies. Here we propose a more stringent test of the theory by developing a computer model with a considerably extended spectrum of possible strategies. In our model, agents are endowed with a limited set of receptors, a set of elementary actions and a neural net in between. Behavioural strategies are not predetermined; instead, the process of evolution constructs and reconstructs them from elementary actions. Two new strategies of cooperative attack and defence emerge in simulations, as well as the well-known dove, hawk and bourgeois strategies. Our results indicate that cooperative strategies can evolve even under such minimalist assumptions, provided that agents are capable of perceiving heritable external markers of other agents.

...commented on at:
John Hawks
and
Gene Expression

No comments:

 
Locations of visitors to this page