this is pretty cool...using zinc finger nucleases to mimic the protective effect of the CCR5delta32 mutation against HIV infection.
The fourth author has a hell of a first name!
Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases
Elena E Perez, Jianbin Wang, Jeffrey C Miller, Yann Jouvenot, Kenneth A Kim, Olga Liu1, Nathaniel Wang, Gary Lee, Victor V Bartsevich, Ya-Li Lee, Dmitry Y Guschin, Igor Rupniewski, Adam J Waite, Carmine Carpenito, Richard G Carroll, Jordan S Orange, Fyodor D Urnov, Edward J Rebar, Dale Ando, Philip D Gregory, James L Riley, Michael C Holmes & Carl H June
Nature Biotechnology 26, 808 - 816 (2008)
Abstract: Homozygosity for the naturally occurring 32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted 50% of CCR5 alleles in a pool of primary human CD4+ T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4+ T cells had lower viral loads and higher CD4+ T-cell counts than mice engrafted with wild-type CD4+ T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4+ T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN–modified autologous CD4+ T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.
No comments:
Post a Comment